Current fluctuations and oscillations in smooth muscle cells from hog carotid artery. Role of the sarcoplasmic reticulum.

نویسندگان

  • M Désilets
  • S P Driska
  • C M Baumgarten
چکیده

Electrical activity of enzymatically isolated, smooth muscle cells from hog carotid arteries was recorded under current clamp and voltage clamp. Under the experimental conditions, membrane potential usually was not stable, and spontaneous hyperpolarizing transients of approximately 100-msec duration were recorded. The amplitude of the transients was markedly voltage dependent and ranged from about 20 mV at a membrane potential of 0 mV to undetectable at membrane potentials negative to -60 mV. Under voltage clamp, transient outward currents displayed a similar voltage dependency. These fluctuations reflect a K+ current; they were abolished by 10 mM tetraethylammonium chloride, a K+ channel blocker, and the current fluctuations reversed direction in high extracellular K+ concentration. Modulators of intracellular Ca2+ concentration also affected electrical activity. Lowering intracellular Ca2+ concentration by addition of 10 mM EGTA to the pipette solution or suppressing sarcoplasmic reticulum function by superfusion with caffeine (10 mM), ryanodine (1 microM), or histamine (3-10 microM) blocked the rapid voltage and current spikes. However, caffeine and histamine induced a much slower hump of outward current before blocking the rapid spikes. This slower transient outward current could be elicited only once after external Ca2+ was removed and is consistent with an activation of K+ channels by Ca2+ released from internal stores. In contrast, removal of external Ca2+ alone failed to abolish the rapid spikes. These results suggest that 1) a Ca2+-dependent K+ conductance can markedly affect the electrical behavior of arterial smooth muscle cells and 2) internal Ca2+ stores, probably the sarcoplasmic reticulum, can support rapid and frequent releases of Ca2+. Exposure to a low concentration of histamine (3 microM) caused synchronization of the irregular, rapid fluctuations giving rise to slow, periodic oscillations of Ca2+-activated K+ conductance with a frequency of 0.1-0.3 Hz. These regular oscillations are reminiscent of periodic Ca2+-induced Ca2+ release, were inhibited by 10 mM caffeine, and point to a modulation of sarcoplasmic reticulum Ca2+ release by histamine.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A quantitative model for refilling of the sarcoplasmic reticulum during vascular smooth muscle asynchronous [Ca] oscillations

We have developed a quantitative model describing the refilling of the sarcoplasmic reticulum during asynchronous [Ca2+]i oscillations in smooth muscle cells of the rabbit inferior vena cava. We have combined confocal microscopy data on the [Ca2+]i oscillations, force transduction data from cell contraction studies and electron microscopy images to build a basis for computational simulations th...

متن کامل

A model of smooth muscle cell synchronization in the arterial wall.

Vasomotion is a rhythmic variation in microvascular diameter. Although known for more than 150 years, the cellular processes underlying the initiation of vasomotion are not fully understood. In the present study a model of a single cell is extended by coupling a number of cells into a tube. The simulated results point to a permissive role of cGMP in establishing intercellular synchronization. I...

متن کامل

K(+) channel inhibition, calcium signaling, and vasomotor tone in canine pulmonary artery smooth muscle.

We investigated the role of K(+) channels in the regulation of baseline intracellular free Ca(2+) concentration ([Ca(2+)](i)), alpha-adrenoreceptor-mediated Ca(2+) signaling, and capacitative Ca(2+) entry in pulmonary artery smooth muscle cells (PASMCs). Inhibition of voltage-gated K(+) channels with 4-aminopyridine (4-AP) increased the membrane potential and the resting [Ca(2+)](i) but attenua...

متن کامل

A quantitative model for refilling of the sarcoplasmic reticulum during vascular smooth muscle asynchronous [Ca2+] oscillations

We have developed a quantitative model for the creation of cytoplasmic Ca gradients near the inner surface of the plasma membrane (PM). In particular we simulated the refilling of the sarcoplasmic reticulum (SR) via PM-SR junctions during asynchronous [Ca2+]i oscillations in smooth muscle cells of the rabbit inferior vena cava. We have combined confocal microscopy data on the [Ca2+]i oscillatio...

متن کامل

Mobilization of cellular calcium and contraction-relaxation of vascular smooth muscle.

In order to clarify the Ca2+ mediated regulatory mechanism of vascular smooth muscle, the correlation between Ca2+ movements in the cell and mechanical response was investigated using isolated rat aorta and bovine basilar artery. K+ induced contraction of vascular smooth muscle required Ca2+ in the medium, and the contraction was always associated with a large increase in Ca2+ influx. In the ab...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation research

دوره 65 3  شماره 

صفحات  -

تاریخ انتشار 1989